cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300946 Rectangular array A(n, k) = (-1)^k*hypergeom([-k, k + n/2 - 1/2], [1], 4) with row n >= 0 and k >= 0, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 19, 1, 5, 33, 239, 1, 7, 51, 387, 3011, 1, 9, 73, 587, 4737, 38435, 1, 11, 99, 847, 7123, 59523, 496365, 1, 13, 129, 1175, 10321, 89055, 761121, 6470385, 1, 15, 163, 1579, 14499, 129367, 1135005, 9854211, 84975315
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Examples

			Array starts:
[0] 1,  1,  19,  239,  3011,  38435,  496365,  6470385, ... [A299864]
[1] 1,  3,  33,  387,  4737,  59523,  761121,  9854211, ... [A299507]
[2] 1,  5,  51,  587,  7123,  89055, 1135005, 14660805, ... [A245926]
[3] 1,  7,  73,  847, 10321, 129367, 1651609, 21360031, ... [A084768]
[4] 1,  9,  99, 1175, 14499, 183195, 2351805, 30539241, ... [A245927]
[5] 1, 11, 129, 1579, 19841, 253707, 3284737, 42924203, ...
[6] 1, 13, 163, 2067, 26547, 344535, 4508877, 59402397, ...
		

Crossrefs

Programs

  • Mathematica
    Arow[n_, len_] := Table[(-1)^k Hypergeometric2F1[-k, k + n/2 - 1/2, 1, 4], {k, 0, len}]; Table[Print[Arow[n, 7]], {n, 0, 6}];