This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300953 #28 May 09 2018 09:32:17 %S A300953 1,1,2,1,2,2,2,0,7,0,5,1,2,3,6,7,8,6,6,3,2,0,9,0,20,0,35,0,34,0,25,0, %T A300953 7,1,2,4,8,10,17,23,30,38,43,46,48,42,41,26,26,12,8,4,2,0,11,0,29,0, %U A300953 63,0,115,0,176,0,238,0,255,0,230,0,169,0,92,0,41,0,9 %N A300953 Number T(n,k) of Dyck paths of semilength n such that 2*k is the difference between the area above the path and the area below the path, measured within the smallest enclosing rectangle based on the x-axis; triangle T(n,k), n>=0, -floor((n-1)^2/4) <= k <= floor((n-1)^2/4), read by rows. %H A300953 Alois P. Heinz, <a href="/A300953/b300953.txt">Rows n = 0..50, flattened</a> %H A300953 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %F A300953 Sum_{k = -floor((n-1)^2/4)..floor((n-1)^2/4)} k * T(n,k) = A300996(n). %F A300953 T(n,-floor((n-1)^2/4)) = A040001(n). %F A300953 T(n, floor((n-1)^2/4)) = A026741(n+1) for n > 2. %F A300953 T(n,k) = 0 iff n is even and k is odd or abs(k) > floor(n*(n-1)/6). %e A300953 .______. %e A300953 | /\/\ | , rectangle area: 12, above path area: 5, %e A300953 T(3,-1) = 1: |/____\| , below path area: 7, difference: (5-7) = 2 * (-1). %e A300953 . %e A300953 /\ %e A300953 / \ %e A300953 T(3,0) = 2: / \ /\/\/\ . %e A300953 . %e A300953 /\ /\ %e A300953 T(3,1) = 2: / \/\ /\/ \ . %e A300953 . %e A300953 Triangle T(n,k) begins: %e A300953 : 1 ; %e A300953 : 1 ; %e A300953 : 2 ; %e A300953 : 1, 2, 2 ; %e A300953 : 2, 0, 7, 0, 5 ; %e A300953 : 1, 2, 3, 6, 7, 8, 6, 6, 3 ; %e A300953 : 2, 0, 9, 0, 20, 0, 35, 0, 34, 0, 25, 0, 7 ; %e A300953 : 1, 2, 4, 8, 10, 17, 23, 30, 38, 43, 46, 48, 42, 41, 26, 26, 12, 8, 4 ; %Y A300953 Row sums give A000108. %Y A300953 Column k=0 gives A300952. %Y A300953 Cf. A002620, A026741, A040001, A129182, A239927, A300322, A300996. %K A300953 nonn,tabf %O A300953 0,3 %A A300953 _Alois P. Heinz_, Mar 16 2018