cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300955 In the prime tower factorization of n, replace 2's with 3's and 3's with 2's.

This page as a plain text file.
%I A300955 #18 Jan 30 2025 05:33:54
%S A300955 1,3,2,27,5,6,7,9,8,15,11,54,13,21,10,7625597484987,17,24,19,135,14,
%T A300955 33,23,18,125,39,4,189,29,30,31,243,22,51,35,216,37,57,26,45,41,42,43,
%U A300955 297,40,69,47,15251194969974,343,375,34,351,53,12,55,63,38,87,59
%N A300955 In the prime tower factorization of n, replace 2's with 3's and 3's with 2's.
%C A300955 The prime tower factorization of a number is defined in A182318.
%C A300955 This sequence is a self-inverse multiplicative permutation of the natural numbers.
%C A300955 This sequence has infinitely many fixed points (A300957); for any k > 0, at least one of k or 2^k * 3^a(k) is a fixed point.
%C A300955 This sequence is a recursive version of A182318.
%C A300955 This sequence has connections with A300948.
%H A300955 Rémy Sigrist, <a href="/A300955/b300955.txt">Table of n, a(n) for n = 1..10000</a>
%H A300955 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A300955 Multiplicative with a(p^k) = A064614(p)^a(k).
%F A300955 a(a(n)) = n.
%e A300955 a(6) = a(2 * 3) = 3 * 2 = 6.
%e A300955 a(16) = a(2 ^ 2 ^ 2) = 3 ^ 3 ^ 3 = 7625597484987.
%p A300955 a:= n-> `if`(n=1, 1, mul(`if`(i[1]=2, 3, `if`(i[1]=3,
%p A300955              2, i[1]))^a(i[2]), i=ifactors(n)[2])):
%p A300955 seq(a(n), n=1..60);  # _Alois P. Heinz_, Mar 17 2018
%t A300955 a[n_] := If[n == 1, 1, Product[If[i[[1]] == 2, 3, If[i[[1]] == 3,
%t A300955    2, i[[1]]]]^a[i[[2]]], {i, FactorInteger[n]}]];
%t A300955 Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Jan 30 2025, after _Alois P. Heinz_ *)
%o A300955 (PARI) a(n) = my (f=factor(n)); prod(i=1, #f~, my (p=f[i,1]); if (p==2, 3, p==3, 2, p)^a(f[i,2]))
%Y A300955 Cf. A064614, A182318, A300948, A300957 (fixed points).
%K A300955 nonn,mult
%O A300955 1,2
%A A300955 _Rémy Sigrist_, Mar 17 2018