This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300990 #7 Mar 19 2018 21:29:50 %S A300990 1,1,3,49,1777,101541,8140411,855134533,112545136929,17984228218057, %T A300990 3409574126285971,753501858876909561,191427165598888279633, %U A300990 55281557535673696196269,17980171490246227257206667,6535371640250591590600624141,2637140727761043517527505819201,1174615924949881797618432103697553,574619225547616163988810792896019619 %N A300990 E.g.f. A(x) satisfies: [x^n] A(x)^(5*n) = (n+4) * [x^(n-1)] A(x)^(5*n) for n>=1. %H A300990 Paul D. Hanna, <a href="/A300990/b300990.txt">Table of n, a(n) for n = 0..300</a> %F A300990 E.g.f. A(x) satisfies: A(x) = exp( x * (A(x) - 4*x*A'(x)) / (A(x) - 5*x*A'(x)) ). %e A300990 E.g.f.: A(x) = 1 + x + 3*x^2/2! + 49*x^3/3! + 1777*x^4/4! + 101541*x^5/5! + 8140411*x^6/6! + 855134533*x^7/7! + 112545136929*x^8/8! + 17984228218057*x^9/9! + ... %e A300990 such that [x^n] A(x)^(5*n) = (n+4) * [x^(n-1)] A(x)^(5*n) for n>=1. %e A300990 RELATED SERIES. %e A300990 A(x)^5 = 1 + 5*x + 35*x^2/2! + 485*x^3/3! + 14545*x^4/4! + 756025*x^5/5! + 57290875*x^6/6! + 5790439625*x^7/7! + 740641270625*x^8/8! + 115751765142125*x^9/9! + ... %e A300990 ILLUSTRATION OF DEFINITION. %e A300990 The table of coefficients of x^k in A(x)^(5*n) begins: %e A300990 n=1: [(1), (5), 35/2, 485/6, 14545/24, 151205/24, ...]; %e A300990 n=2: [1, (10), (60), 1010/3, 6980/3, 21490, 2249000/9, ...]; %e A300990 n=3: [1, 15, (255/2), (1785/2), 51795/8, 449805/8, ...]; %e A300990 n=4: [1, 20, 220, (5620/3), (44960/3), 389740/3, ...]; %e A300990 n=5: [1, 25, 675/2, 20425/6, (730225/24), (2190675/8), ...]; %e A300990 n=6: [1, 30, 480, 5610, 55980, (534270), (5342700), ...]; ... %e A300990 in which the coefficients in parenthesis are related by %e A300990 5 = 5*(1); 60 = 6*(10); 1785/2 = 7*(255/2); 44960/3 = 8*(5620/3); 2190675/8 = 9*(730225/24); 5342700 = 10*(534270); ... %e A300990 illustrating: [x^n] A(x)^(5*n) = (n+4) * [x^(n-1)] A(x)^(5*n). %e A300990 LOGARITHMIC PROPERTY. %e A300990 The logarithm of the e.g.f. is an integer power series in x satisfying %e A300990 log(A(x)) = x * (1 - 4*x*A'(x)/A(x)) / (1 - 5*x*A'(x)/A(x)); %e A300990 explicitly, %e A300990 log(A(x)) = x + x^2 + 7*x^3 + 66*x^4 + 769*x^5 + 10405*x^6 + 157540*x^7 + 2609120*x^8 + 46569365*x^9 + 886686635*x^10 + ... + A300991(n)*x^n + ... %o A300990 (PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(5*(#A-1))); A[#A] = ((#A+3)*V[#A-1] - V[#A])/(5*(#A-1)) ); n!*polcoeff( Ser(A), n)} %o A300990 for(n=0, 25, print1(a(n), ", ")) %o A300990 (PARI) {a(n) = my(A=1); for(i=1, n, A = exp( x*(A-4*x*A')/(A-5*x*A' +x*O(x^n)) ) ); n!*polcoeff(A, n)} %o A300990 for(n=0, 25, print1(a(n), ", ")) %Y A300990 Cf. A300991, A182962, A300735, A300986, A300988, A300992. %K A300990 nonn %O A300990 0,3 %A A300990 _Paul D. Hanna_, Mar 19 2018