A301275 Numerator of variance of first n primes.
0, 1, 7, 59, 64, 581, 649, 2287, 1001, 2443, 5669, 17915, 6665, 36637, 3529, 22413, 22813, 13065, 75865, 191819, 58778, 289013, 7627, 141973, 5213, 628001, 370333, 96211, 249436, 381167, 672727, 1565639, 453767, 691587, 1194917, 301867, 770294
Offset: 1
Examples
The variances are 0, 1/2, 7/3, 59/12, 64/5, 581/30, 649/21, 2287/56, 1001/18, 2443/30, 5669/55, 17915/132, 6665/39, 36637/182, 3529/15, 22413/80, 22813/68, 13065/34, 75865/171, 191819/380, 58778/105, 289013/462, 7627/11, 141973/184, 5213/6, 628001/650, ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Joel E. Cohen, Statistics of Primes (and Probably Twin Primes) Satisfy Taylor’s Law from Ecology, The American Statistician, 70 (2016), 399-404.
Programs
-
Maple
v := n -> 1/(n-1) * add((ithprime(i) add(ithprime(j),j=1..n)/n)^2, i=1..n ); v1:= [0, seq(v(n),n=2..70)];
-
Mathematica
a[n_] := If[n == 1, 0, Variance[Prime[Range[n]]] // Numerator]; a /@ Range[100] (* Jean-François Alcover, Oct 27 2019 *)
-
Python
from fractions import Fraction from sympy import prime mu, variance = Fraction(prime(1)), Fraction(0) A301275_list = [variance.numerator] for i in range(2,10001): datapoint = prime(i) newmu = mu+(datapoint-mu)/i variance = (variance*(i-2) + (datapoint-mu)*(datapoint-newmu))/(i-1) mu = newmu A301275_list.append(variance.numerator) # Chai Wah Wu, Mar 22 2018
Comments