A301279 Denominator of variance of n-th row of Pascal's triangle.
1, 1, 3, 3, 10, 15, 21, 7, 36, 45, 11, 33, 13, 91, 105, 15, 136, 153, 171, 95, 105, 231, 253, 69, 150, 325, 351, 189, 203, 435, 155, 31, 528, 51, 595, 315, 111, 703, 741, 195, 410, 861, 903, 473, 495, 1035, 1081, 141, 588, 1225, 255, 663, 689, 1431, 1485
Offset: 0
Examples
The first few variances are 0, 0, 1/3, 4/3, 47/10, 244/15, 1186/21, 1384/7, 25147/36, 112028/45, 98374/11, 1067720/33, 1531401/13, 39249768/91, 166656772/105, 88008656/15, 2961699667/136, 12412521388/153, 51854046982/171, 108006842264/95, 448816369361/105, ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Simon Demers, Taylor's Law Holds for Finite OEIS Integer Sequences and Binomial Coefficients, American Statistician, online: 19 Jan 2018.
Crossrefs
Programs
-
Maple
M:=70; m := n -> 2^n/(n+1); m1:=[seq(m(n),n=0..M)]; # A084623/A000265 v := n -> (1/n) * add((binomial(n,i) - m(n))^2, i=0..n ); v1:= [0, 0, seq(v(n),n=2..60)]; # A301278/A301279
-
PARI
a(n) = if(n==0, 1, denominator(binomial(2*n,n)/n - 4^n/(n*(n+1)))); \\ Altug Alkan, Mar 25 2018
-
Python
from fractions import Fraction from sympy import binomial def A301279(n): return (Fraction(int(binomial(2*n,n)))/n - Fraction(4**n)/(n*(n+1))).denominator if n > 0 else 1 # Chai Wah Wu, Mar 23 2018
Formula
a(0) = 1; a(n) = denominator of binomial(2n,n)/n - 4^n/(n*(n+1)) for n >= 1. - Chai Wah Wu, Mar 23 2018
Comments