cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301279 Denominator of variance of n-th row of Pascal's triangle.

Original entry on oeis.org

1, 1, 3, 3, 10, 15, 21, 7, 36, 45, 11, 33, 13, 91, 105, 15, 136, 153, 171, 95, 105, 231, 253, 69, 150, 325, 351, 189, 203, 435, 155, 31, 528, 51, 595, 315, 111, 703, 741, 195, 410, 861, 903, 473, 495, 1035, 1081, 141, 588, 1225, 255, 663, 689, 1431, 1485
Offset: 0

Views

Author

N. J. A. Sloane, Mar 18 2018

Keywords

Comments

Variance here is sample variance unbiased estimator. For population variance, the denominator is A191871(n+1) = A000265(n+1)^2. - Chai Wah Wu, Mar 25 2018

Examples

			The first few variances are 0, 0, 1/3, 4/3, 47/10, 244/15, 1186/21, 1384/7, 25147/36, 112028/45, 98374/11, 1067720/33, 1531401/13, 39249768/91, 166656772/105, 88008656/15, 2961699667/136, 12412521388/153, 51854046982/171, 108006842264/95, 448816369361/105, ...
		

Crossrefs

Mean and variance of n-th row of Pascal's triangle: A084623/A000265, A301278/A301279, A054650, A301280.

Programs

  • Maple
    M:=70;
    m := n -> 2^n/(n+1);
    m1:=[seq(m(n),n=0..M)]; # A084623/A000265
    v := n -> (1/n) * add((binomial(n,i) - m(n))^2, i=0..n );
    v1:= [0, 0, seq(v(n),n=2..60)]; # A301278/A301279
  • PARI
    a(n) = if(n==0, 1, denominator(binomial(2*n,n)/n - 4^n/(n*(n+1)))); \\ Altug Alkan, Mar 25 2018
  • Python
    from fractions import Fraction
    from sympy import binomial
    def A301279(n):
        return (Fraction(int(binomial(2*n,n)))/n - Fraction(4**n)/(n*(n+1))).denominator if n > 0 else 1 # Chai Wah Wu, Mar 23 2018
    

Formula

a(0) = 1; a(n) = denominator of binomial(2n,n)/n - 4^n/(n*(n+1)) for n >= 1. - Chai Wah Wu, Mar 23 2018