A301280 Nearest integer to variance of n-th row of Pascal's triangle.
0, 0, 0, 1, 5, 16, 56, 198, 699, 2490, 8943, 32355, 117800, 431316, 1587207, 5867244, 21777203, 81127591, 303240041, 1136914129, 4274441613, 16111746161, 60873695892, 230495640009, 874525192278, 3324270554675, 12658405644200, 48280298159610
Offset: 0
Keywords
Examples
The first few variances are 0, 0, 1/3, 4/3, 47/10, 244/15, 1186/21, 1384/7, 25147/36, 112028/45, 98374/11, 1067720/33, 1531401/13, 39249768/91, 166656772/105, 88008656/15, 2961699667/136, 12412521388/153, 51854046982/171, 108006842264/95, 448816369361/105, ...
Links
- Robert Israel, Table of n, a(n) for n = 0..1667
- Simon Demers, Taylor's Law Holds for Finite OEIS Integer Sequences and Binomial Coefficients, American Statistician, Volume 72, 2018 - Issue 4.
Crossrefs
Programs
-
Maple
M:=70; m := n -> 2^n/(n+1); m1:=[seq(m(n),n=0..M)]; # A084623/A000265 v := n -> (1/n) * add((binomial(n,i) - m(n))^2, i=0..n ); v1:= [0, 0, seq(v(n),n=2..60)]; # A301278/A301279 and A301280 # Alternative: f:= n -> round((binomial(2*n,n)-4^n/(n+1))/n): f(0):=0: map(f, [$0..60]); # Robert Israel, Jul 18 2019
Formula
From Robert Israel, Jul 18 2019: (Start)
The variance is binomial(2*n,n)/n - 4^n/(n*(n+1)).
a(n) ~ 4^n/(sqrt(Pi)*n^(3/2)). (End)