This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301299 #39 Feb 21 2025 22:35:51 %S A301299 1,4,8,13,18,22,26,29,34,40,44,48,50,55,62,66,70,71,76,84,88,92,92,97, %T A301299 106,110,114,113,118,128,132,136,134,139,150,154,158,155,160,172,176, %U A301299 180,176,181,194,198,202,197,202,216,220,224,218,223,238,242,246,239,244,260,264,268,260,265,282 %N A301299 Coordination sequence for node of type V1 in "krq" 2-D tiling (or net). %C A301299 Linear recurrence and g.f. confirmed by Shutov/Maleev link. - _Ray Chandler_, Aug 31 2023 %D A301299 Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, bottom row, 2nd tiling. %H A301299 Ray Chandler, <a href="/A301299/b301299.txt">Table of n, a(n) for n = 0..1000</a> %H A301299 Brian Galebach, <a href="http://probabilitysports.com/tilings.html">Collection of n-Uniform Tilings</a>. See Number 5 from the list of 20 2-uniform tilings. %H A301299 Brian Galebach, <a href="/A250120/a250120.html">k-uniform tilings (k <= 6) and their A-numbers</a> %H A301299 A. V. Maleev, A. A. Mokrova, and A. V. Shutov, <a href="http://poivs.tsput.ru/conf/international/XVI/files/Conference2019M.pdf#page=262">Coordination sequences of the 2-uniform graphs</a> (Russian), Algebra, number theory and discrete geometry: modern problems and application of past problems (2019), Proceedings of the XVI International Conference in honor of the 80th birthday of Professor Michel Deza, 262-266. %H A301299 Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/layers/krq">The krq tiling (or net)</a> %H A301299 Anton Shutov and Andrey Maleev, <a href="https://doi.org/10.1515/zkri-2020-0002">Coordination sequences of 2-uniform graphs</a>, Z. Kristallogr., 235 (2020), 157-166. See supplementary material, krb, vertex u_1. %H A301299 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,2,0,0,0,0,-1). %F A301299 G.f.: -(-x^10-4*x^9-8*x^8-13*x^7-18*x^6-20*x^5-18*x^4-13*x^3-8*x^2-4*x-1)/(x^10-2*x^5+1). - _N. J. A. Sloane_, Mar 29 2018 %t A301299 LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{1,4,8,13,18,22,26,29,34,40,44},100] (* _Paolo Xausa_, Nov 15 2023 *) %Y A301299 Cf. A301301. %Y A301299 Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726. %K A301299 nonn,easy %O A301299 0,2 %A A301299 _N. J. A. Sloane_, Mar 25 2018 %E A301299 a(11)-a(100) from _Davide M. Proserpio_, Mar 28 2018