This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301301 #32 Feb 21 2025 22:35:49 %S A301301 1,4,8,12,16,20,25,30,34,39,43,47,53,56,60,65,68,75,78,81,87,89,97, %T A301301 100,102,109,110,119,122,123,131,131,141,144,144,153,152,163,166,165, %U A301301 175,173,185,188,186,197,194,207,210,207,219,215,229,232,228,241,236,251,254,249,263,257,273,276,270 %N A301301 Coordination sequence for node of type V2 in "krq" 2-D tiling (or net). %C A301301 Linear recurrence and g.f. confirmed by Shutov/Maleev link. - _Ray Chandler_, Aug 31 2023 %D A301301 Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, bottom row, 2nd tiling. %H A301301 Ray Chandler, <a href="/A301301/b301301.txt">Table of n, a(n) for n = 0..1000</a> %H A301301 Brian Galebach, <a href="http://probabilitysports.com/tilings.html">Collection of n-Uniform Tilings</a>. See Number 5 from the list of 20 2-uniform tilings. %H A301301 Brian Galebach, <a href="/A250120/a250120.html">k-uniform tilings (k <= 6) and their A-numbers</a> %H A301301 A. V. Maleev, A. A. Mokrova, and A. V. Shutov, <a href="http://poivs.tsput.ru/conf/international/XVI/files/Conference2019M.pdf#page=262">Coordination sequences of the 2-uniform graphs</a> (Russian), Algebra, number theory and discrete geometry: modern problems and application of past problems (2019), Proceedings of the XVI International Conference in honor of the 80th birthday of Professor Michel Deza, 262-266. %H A301301 Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/layers/krq">The krq tiling (or net)</a> %H A301301 Anton Shutov and Andrey Maleev, <a href="https://doi.org/10.1515/zkri-2020-0002">Coordination sequences of 2-uniform graphs</a>, Z. Kristallogr., 235 (2020), 157-166. See supplementary material, krb, vertex u_1. %H A301301 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,2,0,0,0,0,-1). %F A301301 G.f. = -(x^17+x^16+x^15+2*x^14-x^12-x^11-4*x^10-7*x^9-10*x^8-14*x^7-17*x^6-18*x^5-16*x^4-12*x^3-8*x^2-4*x-1)/(x^10-2*x^5+1). - _N. J. A. Sloane_, Mar 29 2018 %t A301301 LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{1,4,8,12,16,20,25,30,34,39,43,47,53,56,60,65,68,75},100] (* _Paolo Xausa_, Nov 15 2023 *) %Y A301301 Cf. A301299. %Y A301301 Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726. %K A301301 nonn,easy %O A301301 0,2 %A A301301 _N. J. A. Sloane_, Mar 25 2018 %E A301301 a(11)-a(100) from _Davide M. Proserpio_, Mar 28 2018