cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301303 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that x^2 + 23*y^2 = 2^k*m^3 for some k = 0,1,2 and m = 1,2,3,....

This page as a plain text file.
%I A301303 #12 Mar 19 2018 04:20:43
%S A301303 1,1,1,1,3,3,1,1,3,3,2,2,2,4,2,1,3,5,3,5,5,4,3,3,3,5,3,3,4,6,2,1,4,3,
%T A301303 4,5,3,4,2,3,6,5,2,4,6,4,2,2,3,6,3,3,4,6,4,4,5,4,4,5,2,4,4,1,7,8,2,7,
%U A301303 8,5,3,5,5,7,4,5,6,5,2,5
%N A301303 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that x^2 + 23*y^2 = 2^k*m^3 for some k = 0,1,2 and m = 1,2,3,....
%C A301303 Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 2^k (k = 0,1,2,...), 3, 7, 115, 151, 219, 267, 1151, 1367.
%C A301303 We have verified a(n) > 0 for all n = 1..10^8.
%C A301303 See also A301304 and A301314 for similar conjectures.
%H A301303 Zhi-Wei Sun, <a href="/A301303/b301303.txt">Table of n, a(n) for n = 1..10000</a>
%H A301303 Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2016.11.008">Refining Lagrange's four-square theorem</a>, J. Number Theory 175(2017), 167-190.
%H A301303 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1701.05868">Restricted sums of four squares</a>, arXiv:1701.05868 [math.NT], 2017-2018.
%e A301303 a(2) = 1 since 2 = 1^2 + 0^2 + 0^2 + 1^2 with 1 + 23*0 = 1^3.
%e A301303 a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with 2^2 + 23*0 = 2^2*1^3.
%e A301303 a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 2^2 + 23*1^2 = 3^3.
%e A301303 a(48) = 2 since 48 = 4^2 + 0^2 + 4^2 + 4^2 = 6^2 + 2^2 + 2^2 + 2^2 with 4^2 + 23*0^2 = 2*2^3 and 6^2 + 23*2^2 = 2*4^3.
%e A301303 a(115) = 1 since 115 = 3^2 + 3^2 + 4^2 + 9^2 with 3^2 + 23*3^2 = 6^3.
%e A301303 a(267) = 1 since 267 = 3^2 + 1^2 + 1^2 + 16^2 with 3^2 + 23*1^2 = 2^2*2^3.
%e A301303 a(1151) = 1 since 1151 = 7^2 + 3^2 + 2^2 + 33^2 with 7^2 + 23*3^2 = 2^2*4^3.
%e A301303 a(1367) = 1 since 1367 = 17^2 + 5^2 + 18^2 + 27^2 with 17^2 + 23*5^2 = 2^2*6^3.
%t A301303 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
%t A301303 CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
%t A301303 QQ[n_]:=n>0&&(CQ[n]||CQ[n/2]||CQ[n/4]);
%t A301303 tab={};Do[r=0;Do[If[QQ[x^2+23y^2],Do[If[SQ[n-x^2-y^2-z^2],r=r+1],{z,0,Sqrt[(n-x^2-y^2)/2]}]],{y,0,Sqrt[n/2]},{x,y,Sqrt[n-y^2]}];tab=Append[tab,r],{n,1,80}];Print[tab]
%Y A301303 Cf. A000118, A000290, A271510, A271513, A271518, A281976, A300666, A300667, A300708, A300712, A300751, A300752, A300791, A300792, A300844, A300908, A301304, A301314.
%K A301303 nonn
%O A301303 1,5
%A A301303 _Zhi-Wei Sun_, Mar 17 2018