This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301335 #6 Mar 19 2018 22:13:06 %S A301335 1,1,4,27,260,3175,47304,833147,16941120,390611331,10070060200, %T A301335 287028156162,8962583345856,304255011200647,11156593415089808, %U A301335 439452231820920000,18505340390664634384,829599437871129843839,39447684087807950938908,1983038000428208822539998,105080571577382659860160800 %N A301335 a(n) = [x^n] 1/(1 + (1/2)*n*(1 - theta_3(x))), where theta_3() is the Jacobi theta function. %C A301335 Number of compositions (ordered partitions) of n into squares of n kinds. %H A301335 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %H A301335 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %F A301335 a(n) = [x^n] 1/(1 - n*Sum_{k>=1} x^(k^2)). %F A301335 a(n) ~ n^n * (1 + 1/n^2 - 3/n^3 + 1/(2*n^4) - 13/(2*n^5) + 127/(6*n^6) - 4/n^7 + 335/(8*n^8) - 665/(4*n^9) + 337/(15*n^10) + ...). - _Vaclav Kotesovec_, Mar 19 2018 %t A301335 Table[SeriesCoefficient[1/(1 + (1/2) n (1 - EllipticTheta[3, 0, x])), {x, 0, n}], {n, 0, 20}] %t A301335 Table[SeriesCoefficient[1/(1 - n Sum[x^k^2, {k, 1, n}]), {x, 0, n}], {n, 0, 20}] %Y A301335 Cf. A000290, A006456, A240944, A300974, A301334. %K A301335 nonn %O A301335 0,3 %A A301335 _Ilya Gutkovskiy_, Mar 18 2018