A301342 Regular triangle where T(n,k) is the number of rooted identity trees with n nodes and k leaves.
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 4, 1, 0, 0, 0, 1, 6, 5, 0, 0, 0, 0, 1, 9, 13, 2, 0, 0, 0, 0, 1, 12, 28, 11, 0, 0, 0, 0, 0, 1, 16, 53, 40, 3, 0, 0, 0, 0, 0, 1, 20, 91, 109, 26, 0, 0, 0, 0, 0, 0, 1, 25, 146, 254, 116, 6, 0, 0, 0, 0, 0, 0, 1, 30, 223, 524, 387, 61, 0, 0, 0, 0, 0, 0, 0, 1, 36
Offset: 1
Examples
Triangle begins: 1 1 0 1 0 0 1 1 0 0 1 2 0 0 0 1 4 1 0 0 0 1 6 5 0 0 0 0 1 9 13 2 0 0 0 0 1 12 28 11 0 0 0 0 0 1 16 53 40 3 0 0 0 0 0 1 20 91 109 26 0 0 0 0 0 0 1 25 146 254 116 6 0 0 0 0 0 0 1 30 223 524 387 61 0 0 0 0 0 0 0 The T(6,2) = 4 rooted identity trees: (((o(o)))), ((o((o)))), (o(((o)))), ((o)((o))).
Crossrefs
Programs
-
Mathematica
irut[n_]:=irut[n]=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[irut/@c]],UnsameQ@@#&]]/@IntegerPartitions[n-1]]; Table[Length[Select[irut[n],Count[#,{},{-2}]===k&]],{n,8},{k,n}]