cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301344 Regular triangle where T(n,k) is the number of semi-binary rooted trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 4, 1, 0, 0, 1, 6, 4, 0, 0, 0, 1, 9, 11, 2, 0, 0, 0, 1, 12, 24, 9, 0, 0, 0, 0, 1, 16, 46, 32, 3, 0, 0, 0, 0, 1, 20, 80, 86, 20, 0, 0, 0, 0, 0, 1, 25, 130, 203, 86, 6, 0, 0, 0, 0, 0, 1, 30, 200, 423, 283, 46, 0, 0, 0, 0, 0, 0, 1, 36, 295, 816, 786, 234, 11, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

A rooted tree is semi-binary if all outdegrees are <= 2. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.

Examples

			Triangle begins:
1
1   0
1   1   0
1   2   0   0
1   4   1   0   0
1   6   4   0   0   0
1   9  11   2   0   0   0
1  12  24   9   0   0   0   0
1  16  46  32   3   0   0   0   0
1  20  80  86  20   0   0   0   0   0
1  25 130 203  86   6   0   0   0   0   0
The T(6,3) = 4 semi-binary rooted trees: ((o(oo))), (o((oo))), (o(o(o))), ((o)(oo)).
		

Crossrefs

Programs

  • Mathematica
    rbt[n_]:=rbt[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rbt/@c]]]/@Select[IntegerPartitions[n-1],Length[#]<=2&]];
    Table[Length[Select[rbt[n],Count[#,{},{-2}]===k&]],{n,15},{k,n}]