A301345 Regular triangle where T(n,k) is the number of transitive rooted trees with n nodes and k leaves.
1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 2, 4, 1, 0, 0, 0, 0, 3, 4, 5, 1, 0, 0, 0, 0, 2, 6, 6, 6, 1, 0, 0, 0, 0, 1, 6, 10, 9, 7, 1, 0, 0, 0, 0, 1, 5, 12, 16, 12, 8, 1, 0, 0, 0, 0, 0, 4, 13, 22, 23, 16, 9, 1, 0, 0, 0, 0, 0, 3, 14, 27, 36, 32, 20, 10, 1, 0, 0, 0, 0, 0, 2, 11
Offset: 1
Examples
Triangle begins: 1 1 0 0 1 0 0 1 1 0 0 0 2 1 0 0 0 1 3 1 0 0 0 1 2 4 1 0 0 0 0 3 4 5 1 0 0 0 0 2 6 6 6 1 0 0 0 0 1 6 10 9 7 1 0 0 0 0 1 5 12 16 12 8 1 0 The T(9,5) = 6 transitive rooted trees: (o(o)(oo(o))), (o((oo))(oo)), (oo(o)(o(o))), (o(o)(o)(oo)), (ooo(o)((o))), (oo(o)(o)(o)).
Crossrefs
Programs
-
Mathematica
rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]]; trat[n_]:=Select[rut[n],Complement[Union@@#,#]==={}&]; Table[Length[Select[trat[n],Count[#,{},{-2}]===k&]],{n,15},{k,n}]