cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301371 Maximum determinant of an n X n matrix with n copies of the numbers 1 .. n.

This page as a plain text file.
%I A301371 #43 Aug 04 2025 04:19:38
%S A301371 1,1,3,18,160,2325,41895,961772,27296640,933251220
%N A301371 Maximum determinant of an n X n matrix with n copies of the numbers 1 .. n.
%C A301371 929587995 <= a(9) <= 934173632 (upper bound from Gasper's determinant theorem). The lower bound corresponds to a Latin square provided in A309985, but it is unknown whether a larger determinant value can be achieved by an unconstrained arrangement of the matrix entries. - _Hugo Pfoertner_, Aug 27 2019
%C A301371 Oleg Vlasii found a 9 X 9 matrix significantly exceeding the determinant value achievable by a Latin square. See example and links. - _Hugo Pfoertner_, Nov 04 2020
%H A301371 Ortwin Gasper, Hugo Pfoertner and Markus Sigg, <a href="http://www.emis.de/journals/JIPAM/article1119.html">An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum</a>, JIPAM, Journal of Inequalities in Pure and Applied Mathematics, Volume 10, Issue 3, Article 63, 2008.
%H A301371 IBM Research, <a href="https://www.research.ibm.com/haifa/ponderthis/challenges/November2019.html">Large 9x9 determinant</a>, Ponder This Challenge November 2019.
%H A301371 Markus Sigg, <a href="https://arxiv.org/abs/1804.02897">Gasper's determinant theorem, revisited</a>, arXiv:1804.02897 [math.CO], 2018.
%H A301371 Oleg Vlasii, <a href="https://github.com/OlegV567/Determinant-OEIS-A301371-9">Determinant-OEIS-A301371-9</a>, program and description, 4 Dec 2019.
%H A301371 <a href="/index/De#determinants">Index entries for sequences related to maximal determinants</a>
%F A301371 A328030(n) <= a(n) <= A328031(n). - _Hugo Pfoertner_, Nov 04 2019
%e A301371 Matrices with maximum determinants:
%e A301371 a(2) = 3:
%e A301371   (2  1)
%e A301371   (1  2)
%e A301371 a(3) = 18:
%e A301371   (3  1  2)
%e A301371   (2  3  1)
%e A301371   (1  2  3)
%e A301371 a(4) = 160:
%e A301371   (4  3  2  1)
%e A301371   (1  4  3  2)
%e A301371   (3  1  4  3)
%e A301371   (2  2  1  4)
%e A301371 a(5) = 2325:
%e A301371   (5  3  1  2  4)
%e A301371   (2  5  4  1  3)
%e A301371   (4  1  5  3  2)
%e A301371   (3  4  2  5  1)
%e A301371   (1  2  3  4  5)
%e A301371 a(6) = 41895:
%e A301371   (6  1  4  2  3  5)
%e A301371   (3  6  2  1  5  4)
%e A301371   (4  5  6  3  2  1)
%e A301371   (5  3  1  6  4  2)
%e A301371   (1  2  5  4  6  3)
%e A301371   (2  4  3  5  1  6)
%e A301371 a(7) = 961772:
%e A301371   (7  2  3  5  1  4  6)
%e A301371   (3  7  6  4  2  1  5)
%e A301371   (2  1  7  6  4  5  3)
%e A301371   (4  5  1  7  6  3  2)
%e A301371   (6  3  5  1  7  2  4)
%e A301371   (5  6  4  2  3  7  1)
%e A301371   (1  4  2  3  5  6  7)
%e A301371 a(8) = 27296640:
%e A301371   (8  8  3  5  4  3  4  1)
%e A301371   (1  8  6  3  1  6  6  5)
%e A301371   (5  3  8  1  7  6  4  2)
%e A301371   (5  1  6  8  2  4  7  3)
%e A301371   (1  5  2  7  8  6  4  3)
%e A301371   (7  3  2  4  3  8  2  7)
%e A301371   (5  4  2  2  6  2  8  7)
%e A301371   (4  5  7  6  5  1  1  7)
%e A301371 a(n) is an upper bound for the determinant of an n X n Latin square. a(n) = A309985(n) for n <= 7. a(8) > A309985(8). - _Hugo Pfoertner_, Aug 26 2019
%e A301371 From _Hugo Pfoertner_, Nov 04 2020: (Start)
%e A301371 a(9) = 933251220, achieved by a Non-Latin square:
%e A301371   (9  5  5  3  3  2  2  8  8)
%e A301371   (4  9  2  6  7  5  3  1  8)
%e A301371   (4  7  9  2  1  8  6  3  5)
%e A301371   (6  3  7  9  4  1  8  2  5)
%e A301371   (6  2  8  5  9  7  1  4  3)
%e A301371   (7  4  1  8  2  9  5  6  3)
%e A301371   (7  6  3  1  8  4  9  5  2)
%e A301371   (1  8  6  7  5  3  4  9  2)
%e A301371   (1  1  4  4  6  6  7  7  9)
%e A301371 found by Oleg Vlasii as an answer to the IBM Ponder This Challenge November 2019. See links. (End)
%Y A301371 Cf. A085000, A309985, A328030, A328031.
%K A301371 nonn,hard,more
%O A301371 0,3
%A A301371 _Hugo Pfoertner_, Mar 21 2018
%E A301371 a(8) from _Hugo Pfoertner_, Aug 26 2019
%E A301371 a(9) from _Hugo Pfoertner_, Nov 04 2020