cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301376 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that x^2-(3*y)^2 = 4^k for some k = 0,1,2,....

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 4, 2, 2, 3, 3, 3, 3, 1, 5, 6, 2, 2, 10, 5, 4, 3, 2, 7, 7, 3, 5, 4, 3, 1, 12, 8, 2, 6, 4, 5, 10, 2, 7, 13, 8, 5, 10, 6, 6, 3, 8, 4, 7, 7, 8, 11, 4, 3, 17, 9, 5, 4, 8, 5, 9, 1, 8, 14, 8, 8, 13, 5, 8, 6, 11, 10, 7, 5, 13, 15, 7, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 19 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. Moreover, any positive square n^2 can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers and y even such that x^2 - (3*y)^2 = 4^k for some k = 0,1,2,....
We have verifed this for all n = 1..10^7.
Compare this conjecture with the conjectures in A299537.
As 3*A001353(n)^2 + 1 = A001075(n)^2, the conjecture in A300441 implies that any positive square can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that x^2 - 3*y^2 = 4^k for some k = 0,1,2,....
See also A301391 for a similar conjecture.

Examples

			a(1) = 1 since 1^2 = 1^2 + 0^2 + 0^2 + 0^2 with 1^2 - (3*0)^2 = 4^0.
a(5) = 1 since 5^2 = 4^2 + 0^2 + 0^2 + 3^2 with 4^2 - (3*0)^2 = 4^2.
a(7) = 1 since 7^2 = 2^2 + 0^2 + 3^2 + 6^2 with 2^2 - (3*0)^2 = 4^1.
a(31) = 3 since 31^2 = 10^2 + 2^2 + 4^2 + 29^2 with 10^2 - (3*2)^2 = 4^3, and 31^2 = 20^2 + 4^2 + 4^2 + 23^2 = 20^2 + 4^2 + 16^2 + 17^2 with 20^2 - (3*4)^2 = 4^4.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1]-3,4]==0&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=n==0||(n>0&&g[n]);
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[4^k+9y^2]&&QQ[n^2-4^k-10y^2],Do[If[SQ[n^2-(4^k+10y^2)-z^2],r=r+1],{z,0,Sqrt[(n^2-4^k-10y^2)/2]}]],{k,0,Log[2,n]},{y,0,Sqrt[(n^2-4^k)/10]}];tab=Append[tab,r],{n,1,80}];Print[tab]