This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301384 #12 Feb 16 2025 08:33:53 %S A301384 1,2,2,1,2,1,2,1,4,1,1,4,2,2,2,1,4,3,1,2,1,2,4,2,2,1,1,6,3,1,5,3,3,2, %T A301384 2,1,4,1,2,4,8,5,1,2,1,3,1,15,2,4,2,1,5,1,6,2,1,3,4,3,1,2,2,1,2,4,5,1, %U A301384 5,4,1,2,3,5,1,1,1,6,2,4,2,1,2,1,17,4,1 %N A301384 Number of integer-sided triangles of area A188158(n). %C A301384 Nonzero terms of A051584. %H A301384 Giovanni Resta, <a href="/A301384/b301384.txt">Table of n, a(n) for n = 1..10000</a> %H A301384 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Triangle.html">Triangle</a> %e A301384 a(9) = 4 because A188158(9) = 60 corresponding to 4 triangles (a, b, c) = (6, 25, 29), (8, 15, 17), (10, 13, 13) and (13, 13, 24) of area 60. %p A301384 A301384 := proc(A::integer) %p A301384 local Asqr, s,a,b,c,sol ; %p A301384 sol := 0 ; %p A301384 Asqr := A^2 ; %p A301384 for s in numtheory[divisors](Asqr) do %p A301384 if s^2> A then %p A301384 for a from 1 to s-1 do %p A301384 if modp(Asqr,s-a) = 0 then %p A301384 for b from a to s-1 do %p A301384 c := 2*s-a-b ; %p A301384 if s*(s-a)*(s-b)*(s-c) = Asqr and c >= b then %p A301384 sol := sol+1 ; %p A301384 end if; %p A301384 end do: %p A301384 end if; %p A301384 end do: %p A301384 end if; %p A301384 end do: %p A301384 sol ; %p A301384 end proc: %p A301384 for n from 3 to 600 do %p A301384 a301384 := A301384(n) ; %p A301384 if a301384 > 0 then %p A301384 printf("%d,\n",a301384) ; %p A301384 end if; %p A301384 end do: # _R. J. Mathar_, May 02 2018 %t A301384 nn=1000;lst={};lst2={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s(s-a)(s-b)(s-c);If[0<area2<=nn^2&&IntegerQ[Sqrt[area2]],AppendTo[lst,Sqrt[area2]]]],{a,nn},{b,a},{c,b}];lst1=Sort[lst];n0=Length[lst];i=1;Do[If[Part[lst1,t-1]==Part[lst1,t],i=i+1,AppendTo[lst2,i];i=1],{t,2,n0}];lst2 %Y A301384 Cf. A188158, A024153 (distinct side lengths), A051516, A051584, A051585. %K A301384 nonn %O A301384 1,2 %A A301384 _Michel Lagneau_, Mar 20 2018