cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301391 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and y even such that x^2 - (6*y)^2 = 4^k for some k = 0,1,2,....

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 3, 4, 1, 1, 8, 2, 2, 2, 3, 2, 6, 1, 2, 2, 1, 1, 11, 3, 2, 4, 4, 3, 3, 1, 6, 10, 6, 2, 7, 2, 3, 2, 6, 3, 8, 2, 7, 7, 2, 1, 11, 4, 4, 2, 2, 1, 6, 1, 3, 11, 3, 3, 16, 3, 5, 4, 8, 5, 2, 3, 11, 5, 8, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 20 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 11, 13, 19, 2^k*m (k = 0,1,2,... and m = 1, 5, 7, 31).
We have verified a(n) > 0 for all n = 1..10^7.
See also A301376 for a similar conjecture.

Examples

			a(2) = 1 since 2^2 = 2^2 + 0^2 + 0^2 + 0^2 with 2^2 - (6*0)^2 = 4^1.
a(5) = 1 since 5^2 = 4^2 + 0^2 + 0^2 + 3^2 with 4^2 - (6*0)^2 = 4^2.
a(7) = 1 since 7^2 = 2^2 + 0^2 + 3^2 + 6^2 with 2^2 - (6*0)^2 = 4^1.
a(11) = 1 since 11 = 2^2 + 0^2 + 6^2 + 9^2 with 2^2 - (6*0)^2 = 4^1.
a(13) = 1 since 13 = 4^2 + 0^2 + 3^2 + 12^2 with 4^2 - (6*0)^2 = 4^2.
a(19) = 1 since 19 = 1^2 + 0^2 + 6^2 + 18^2 with 1^2 - (6*0)^2 = 4^0.
a(31) = 1 since 31^2 = 20^2 + 2^2 + 14^2 + 19^2 with 20^2 - (6*2)^2 = 4^4.
a(75) = 2 since 75^2 = 68^2 + 10^2 + 1^2 + 30^2 = 68^2 + 10^2 + 15^2 + 26^2 with 68^2 - (6*10)^2 = 4^5.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1]-3,4]==0&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=n==0||(n>0&&g[n]);
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[4^k+144m^2]&&QQ[n^2-4^k-148m^2], Do[If[SQ[n^2-(4^k+148m^2)-z^2],r=r+1],{z,0,Sqrt[(n^2-4^k-148m^2)/2]}]],{k,0,Log[2,n]},{m,0,Sqrt[(n^2-4^k)/148]}];tab=Append[tab,r],{n,1,80}];Print[tab]