cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301396 Number of nX4 0..1 arrays with every element equal to 2, 3, 4, 5 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A301396 #4 Mar 20 2018 10:59:41
%S A301396 0,4,13,78,446,2619,15538,92338,549096,3267591,19445455,115733520,
%T A301396 688822904,4099797460,24401669153,145237096500,864442371855,
%U A301396 5145110443481,30623402361787,182268749291468,1084853268325407
%N A301396 Number of nX4 0..1 arrays with every element equal to 2, 3, 4, 5 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
%C A301396 Column 4 of A301400.
%H A301396 R. H. Hardin, <a href="/A301396/b301396.txt">Table of n, a(n) for n = 1..210</a>
%F A301396 Empirical: a(n) = 7*a(n-1) -a(n-2) -34*a(n-3) +14*a(n-4) +34*a(n-5) -129*a(n-6) +186*a(n-7) -52*a(n-8) -1057*a(n-9) +1244*a(n-10) +2133*a(n-11) +561*a(n-12) +8661*a(n-13) +4793*a(n-14) -4904*a(n-15) +3451*a(n-16) -22982*a(n-17) -52529*a(n-18) -23037*a(n-19) -99878*a(n-20) -14585*a(n-21) -33823*a(n-22) -37658*a(n-23) +44514*a(n-24) -47595*a(n-25) +17462*a(n-26) +9809*a(n-27) -27359*a(n-28) +26878*a(n-29) -14305*a(n-30) +6310*a(n-31) -2584*a(n-32) +2798*a(n-33) -2854*a(n-34) +2226*a(n-35) -690*a(n-36) -164*a(n-37) +348*a(n-38) -188*a(n-39) -77*a(n-40) +167*a(n-41) -139*a(n-42) +73*a(n-43) -24*a(n-44) +4*a(n-45)
%e A301396 Some solutions for n=5
%e A301396 ..0..0..0..1. .0..0..0..1. .0..0..1..1. .0..0..1..1. .0..0..0..0
%e A301396 ..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..1..0..1. .0..1..1..0
%e A301396 ..0..0..1..1. .0..1..0..1. .0..0..1..1. .1..0..0..1. .1..1..0..1
%e A301396 ..0..0..1..1. .1..0..0..1. .0..1..1..1. .1..1..1..1. .0..0..1..1
%e A301396 ..0..1..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1. .0..1..1..1
%Y A301396 Cf. A301400.
%K A301396 nonn
%O A301396 1,2
%A A301396 _R. H. Hardin_, Mar 20 2018