This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301413 #15 Oct 12 2023 01:53:26 %S A301413 1,1,2,1,2,4,6,8,2,4,6,8,12,24,4,6,8,12,24,36,48,72,96,120,12,216,240, %T A301413 24,36,48,72,96,120,144,216,240,288,24,36,48,72,96,120,144,216,240, %U A301413 288,360,480,576,720,1080,72,1440,120,144,216,240,288,360,480,576 %N A301413 a(n) = A002182(n)/A002110(A108602(n)). %C A301413 This sequence appears in Siano paper, page 5 of 12, as the "variable part" v. - _Michael De Vlieger_, Oct 11 2023 %H A301413 Michael De Vlieger, <a href="/A301413/b301413.txt">Table of n, a(n) for n = 1..10000</a> %H A301413 Michael De Vlieger, <a href="http://vincico.com/proof/A301414.html">On a graph of highly composite numbers</a> %H A301413 A. Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/highly.html">Highly composite numbers</a> %H A301413 D. B. Siano and J. D. Siano, <a href="http://wwwhomes.uni-bielefeld.de/achim/julianmanuscript3.pdf">An Algorithm for Generating Highly Composite Numbers</a>, 1994. %F A301413 a(n) = A002182(n)/A007947(A002182(n)). %e A301413 Let m be a value in this sequence. The table below shows m*A002110(A108602(k)). Columns are A108602(k), rows are m whose products m*A002110(A108602(k)) appear in A002182 are in this sequence. Numbers in A002182 that also appear in A002201 are followed by (*). %e A301413 0 1 2 3 4 5 6 ... %e A301413 +------------------------------------ %e A301413 1 | 1* 2* 6* %e A301413 2 | 4 12* 60* %e A301413 4 | 24 120* 840 %e A301413 6 | 36 180 1260 %e A301413 8 | 48 240 1680 %e A301413 12 | 360* 2520* 27720 %e A301413 24 | 720 5040* 55440* 720720* %e A301413 ... %t A301413 (* Load b-file from A002182 *) %t A301413 With[{s = Import["b002182.txt","Data"][[All,-1]]}, Array[#/Product[Prime@ i, {i, PrimeNu[#]}] &@ s[[#]] &, 62]] %Y A301413 Cf. A002110, A002182, A108602, A301414. %K A301413 nonn %O A301413 1,3 %A A301413 _Michael De Vlieger_, Mar 30 2018