A301416 Numbers k in A301413 such that k * A002110 (m) is in A002201.
1, 2, 4, 12, 24, 48, 144, 720, 1440, 10080, 30240, 60480, 302400, 604800, 6652800, 19958400, 259459200, 518918400, 3632428800, 61751289600, 185253868800, 926269344000, 17599117536000, 35198235072000, 809559406656000, 1619118813312000, 4857356439936000
Offset: 1
Keywords
Examples
From _Michael De Vlieger_, May 14 2018: (Start) Numbers m = A301416(x) * A002110(y) that are in A002201 are plotted below. 1 2 3 4 5 6 7 ... +----------------------------------------------- 1 | 2 2 | 6 12 3 | 60 120 360 4 | 2520 5040 5 | 55440 6 | 720720 1441440 4324320 ... (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..170
- Michael De Vlieger, Plot m = a(x) * A002110(y) at (x,y) for m in A002201, smallest 4096 terms m.
Programs
-
Mathematica
t = Import["b002201.txt", "Data"][[All, -1]]; (* Uses b-file at A002201 Alternatively, use this conversion of terms at A000705 to a 10^4 term dataset for A002201. Processing 10^4 terms will take a long time: *) t = With[{s = Import["b000705.txt", "Data"][[All, -1]]}, FoldList[Times, s]]; f[n_] := With[{d = FactorInteger@ n}, If[n == 1, {0}, ReplacePart[Table[0, {PrimePi[d[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, d]]]; Union@ Array[Times @@ MapIndexed[Prime[First@#2]^#1 &, #3] & @@ {#1, Boole[First@ #2 > 0] Length@ #2, DeleteCases[-1 + #2, 0] /. -1 -> 0} & @@ {t[[#]], f@ t[[#]]} &, Length@ t]