cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301417 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 4 data.

This page as a plain text file.
%I A301417 #41 Mar 04 2024 00:31:13
%S A301417 1,4,19,98,516,2725,14400,76105,402229,2125864,11235643,59382770,
%T A301417 313850616,1658767513,8766940464,46335152161,244891172089,
%U A301417 1294302130684,6840663104371,36154365042098,191083538489436,1009917298758493,5337628549243344,28210506508524169
%N A301417 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 4 data.
%C A301417 Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 4 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/4)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.)
%C A301417 More precisely, given a finite collection X:=(x(i), i =1..n) of data, the Girard-Waring formulae express the sum of the k-th powers of the data, S_k(X):=Sum(x(i)^k, i=1..n), in terms of the elementary symmetric polynomials in the data. The j-th elementary symmetric polynomial is s_j(X):=Sum(Product(x(i), x(i) in X_0), X_0 \subseteq X, where |X_0|=j). So the Girard-Waring formulae provide coefficients a(J,k) such that S_k(X)=Sum(a(J,k)*Product(s_j(X), j \in J), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k). [Thus J is an integer partition of k.] By "mean powers" I mean T_k(X):=Sum(x(i)^k, i=1..n)/n. By the "mean symmetric polynomials" I mean t_j(X):=s_j(X)/binomial(n,j). The Girard-Waring mean formulae then provide coefficients b(J,k,n) such that T_k(X)=Sum(b(J,k,n)*Product(t_j(X), j in J), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k). So the sums of positive coefficients that I reference, for a fixed data set size n, and a fixed power k, are Sum(b(J,k,n), J:=(j(1), j(2), ...) where j(1)+j(2)+...=k, such that b(J,k,n)>0).
%H A301417 Gregory Gerard Wojnar, <a href="/A301417/b301417.txt">Table of n, a(n) for n = 1..68</a>
%H A301417 G. G. Wojnar, D. S. Wojnar, and L. Q. Brin, <a href="http://arxiv.org/abs/1706.08381">Universal peculiar linear mean relationships in all polynomials</a>, arXiv:1706.08381 [math.GM], 2017. See Table GW.n=4 p. 23.
%H A301417 Gregory Gerard Wojnar, <a href="/A301417/a301417.java.txt">Java program</a>.  Within the program, the variable I denotes the number of data; J denotes the exponent.
%H A301417 Michel Marcus, <a href="/A301417/a301417.gp.txt">pari script</a> (translated from java)
%H A301417 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5, 2, -2, -3, -1).
%F A301417 G.f.: (-x*(x+1)^3+1)/(x^5+3*x^4+2*x^3-2*x^2-5*x+1); this denominator equals (1-x)*(2-(1+x)^4).
%F A301417 a(n+5) = 5*a(n+4)+2*a(n+3)-2*a(n+2)-3*a(n+1)-a(n).
%t A301417 CoefficientList[Series[(-x (x + 1)^3 + 1)/(x^5 + 3 x^4 + 2 x^3 - 2 x^2 - 5 x + 1), {x, 0, 23}], x] (* _Michael De Vlieger_, Apr 07 2018 *)
%t A301417 LinearRecurrence[{5, 2, -2, -3, -1}, {1, 4, 19, 98, 516}, 24] (* _Jean-François Alcover_, Dec 02 2018 *)
%o A301417 (PARI) lista(4, nn) \\ use pari script link;  _Michel Marcus_, Apr 21 2018
%Y A301417 Cf. A302764, A024537, A195350, A301420, A301421, A301424.
%K A301417 nonn,easy
%O A301417 1,2
%A A301417 _Gregory Gerard Wojnar_, Mar 20 2018