cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301420 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 5 data.

This page as a plain text file.
%I A301420 #27 Apr 27 2018 11:03:28
%S A301420 1,5,31,205,1376,9251,62210,418361,2813485,18920751,127242501,
%T A301420 855708865,5754662616,38700243965,260260067876,1750255192001,
%U A301420 11770508100345,79156948982921,532332378421395,3579947998967501,24075236064574376
%N A301420 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 5 data.
%C A301420 Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 5 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/5)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.) See extended comment in A301417.
%H A301420 Gregory Gerard Wojnar, <a href="/A301420/b301420.txt">Table of n, a(n) for n = 1..65</a>
%H A301420 G. G. Wojnar, D. S. Wojnar, and L. Q. Brin, <a href="http://arxiv.org/abs/1706.08381">Universal peculiar linear mean relationships in all polynomials</a>, arXiv:1706.08381 [math.GM], 2017. See Table GW.n=5 p. 23.
%F A301420 G.f.: (-x*(x+1)^4+1)/(x^6+4*x^5+5*x^4-5*x^2-6*x+1); this denominator equals (1-x)*(2-(x+1)^5) (conjectured).
%F A301420 a(n+14) = 7*a(n+13) - a(n+12) - 6*a(n+11) + 2*a(n+10) - a(n+9) + 4*a(n+8) + a(n+7) + 4*a(n+5) + 2*a(n+4) - a(n+3) - 5*a(n+2) - 4*a(n+1) - a(n) (conjectured).
%o A301420 (PARI) lista(5, nn) \\ use pari script file in A301417; _Michel Marcus_, Apr 21 2018
%Y A301420 Cf. A302764, A024537, A195350, A301417, A301421, A301424.
%K A301420 nonn
%O A301420 1,2
%A A301420 _Gregory Gerard Wojnar_, Mar 20 2018