This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301421 #30 Aug 18 2021 15:27:07 %S A301421 1,6,46,371,3026,24707,201748,1647429,13452565,109850886,897019828, %T A301421 7324880157,59813470848,488424550081,3988374821616,32568251770049, %U A301421 265945672309613,2171657880797162,17733313387923690,144806604435722311,1182461068019218530,9655734852907204771 %N A301421 Sums of positive coefficients of generalized Chebyshev polynomials of the first kind, for a family of 6 data. %C A301421 Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 6 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/6)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.) See extended comment in A301417. %H A301421 Gregory Gerard Wojnar, <a href="/A301421/b301421.txt">Table of n, a(n) for n = 1..62</a> [a(21) corrected by _Georg Fischer_, Aug 18 2021] %H A301421 G. G. Wojnar, D. S. Wojnar, and L. Q. Brin, <a href="http://arxiv.org/abs/1706.08381">Universal peculiar linear mean relationships in all polynomials</a>, arXiv:1706.08381 [math.GM], 2017. See Table GW.n=6 p. 24. %F A301421 G.f.: (-x*(x+1)^5+1)/(x^7+5*x^6+9*x^5+5*x^4-5*x^3-9*x^2-7*x+1); this denominator equals (1-x)*(2-(1+x)^6) (conjectured). %o A301421 (PARI) lista(6, nn) \\ use pari script file in A301417; _Michel Marcus_, Apr 21 2018 %Y A301421 Cf. A301764, A024537, A195350, A301417, A301420, A301424. %K A301421 nonn %O A301421 1,2 %A A301421 _Gregory Gerard Wojnar_, Mar 20 2018 %E A301421 a(21) corrected by _Georg Fischer_, Aug 18 2021