cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301446 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A301446 #4 Mar 21 2018 11:53:47
%S A301446 8,108,1008,9541,91370,877044,8414314,80726964,774477323,7430228709,
%T A301446 71284529536,683893628760,6561177596757,62947000071013,
%U A301446 603904519316269,5793773626269543,55584635903151286,533271050607294727
%N A301446 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
%C A301446 Column 4 of A301450.
%H A301446 R. H. Hardin, <a href="/A301446/b301446.txt">Table of n, a(n) for n = 1..210</a>
%F A301446 Empirical: a(n) = 9*a(n-1) +14*a(n-2) -82*a(n-3) +5*a(n-4) +210*a(n-5) -381*a(n-6) -224*a(n-7) -7*a(n-8) +790*a(n-9) +1112*a(n-10) -5103*a(n-11) +10610*a(n-12) +4283*a(n-13) -18136*a(n-14) +27908*a(n-15) -6641*a(n-16) -12938*a(n-17) +16505*a(n-18) -16973*a(n-19) -38570*a(n-20) +34834*a(n-21) -1406*a(n-22) -24627*a(n-23) +31869*a(n-24) +15063*a(n-25) -23509*a(n-26) +14505*a(n-27) +2202*a(n-28) -9988*a(n-29) -3801*a(n-30) +1439*a(n-31) -3136*a(n-32) +6064*a(n-33) -1559*a(n-34) -428*a(n-35) +1588*a(n-36) -1063*a(n-37) -352*a(n-38) +384*a(n-39) -64*a(n-40)
%e A301446 Some solutions for n=5
%e A301446 ..0..0..1..0. .0..0..1..0. .0..0..0..1. .0..1..0..1. .0..1..0..0
%e A301446 ..1..0..1..0. .0..1..0..1. .1..0..0..1. .0..1..1..0. .0..0..0..1
%e A301446 ..0..0..1..0. .0..1..1..1. .0..0..1..1. .0..0..0..1. .1..1..1..0
%e A301446 ..0..1..1..1. .0..0..0..1. .1..1..0..0. .0..1..0..1. .0..0..0..0
%e A301446 ..1..0..0..1. .1..0..1..1. .1..0..1..0. .0..0..1..0. .1..0..0..1
%Y A301446 Cf. A301450.
%K A301446 nonn
%O A301446 1,1
%A A301446 _R. H. Hardin_, Mar 21 2018