A301452 Number of ways to write n^2 as m*4^k + x^2 + 2*y^2 with m in the set {2, 3} and k,x,y nonnegative integers.
0, 2, 2, 2, 2, 5, 3, 2, 4, 4, 4, 5, 5, 5, 6, 2, 4, 6, 5, 4, 9, 5, 4, 5, 5, 7, 10, 5, 6, 7, 8, 2, 6, 6, 7, 6, 9, 7, 10, 4, 6, 12, 3, 5, 10, 5, 6, 5, 5, 8, 9, 7, 7, 12, 5, 5, 13, 9, 6, 7, 8, 10, 13, 2, 6, 8, 10, 6, 15, 9, 9, 6, 10, 9, 12, 7, 8, 13, 6, 4
Offset: 1
Keywords
Examples
a(2) = 2 since 2^2 = 2*4^0 + 0^2 + 2*1^2 and 2^2 = 3*4^0 + 1^2 + 2*0^2. a(3) = 2 since 3^2 = 2*4^1 + 1^2 + 2*0^2 and 3^2 = 3*4^0 + 2^2 + 2*1^2. a(5) = 2 since 5^2 = 2*4^1 + 3^2 + 2*2^2 and 5^2 = 3*4^0 + 2^2 + 2*3^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Mathematica
f[n_]:=f[n]=n/2^(IntegerExponent[n,2]); OD[n_]:=OD[n]=Divisors[f[n]]; QQ[n_]:=QQ[n]=(n==0)||(n>0&&Sum[JacobiSymbol[-2,Part[OD[n],i]],{i,1,Length[OD[n]]}]!=0); SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[QQ[n^2-m*4^k],Do[If[SQ[n^2-m*4^k-2x^2],r=r+1],{x,0,Sqrt[(n^2-m*4^k)/2]}]],{m,2,3},{k,0,Log[4,n^2/m]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Comments