This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301453 #47 Apr 15 2018 15:03:06 %S A301453 1,1,2,1,3,4,3,3,6,7,7,6,5,6,6,4,10,13,14,11,11,14,14,12,9,11,11,9,9, %T A301453 12,10,7,17,23,26,20,20,26,25,21,23,26,28,22,22,27,26,20,16,20,22,17, %U A301453 17,22,20,18,18,21,23,18,16,20,17,14,31,40,46,36,39,49 %N A301453 a(n) is the number of ways of writing the binary expansion of n as a concatenation of nonempty substrings with no two consecutive equal substrings. %C A301453 Leading zeros in the binary expansion of n are ignored. %C A301453 The value a(0) = 1 corresponds to the empty concatenation. %C A301453 The following sequences f correspond to the numbers of ways of writing the binary expansion of a number as a concatenation of substrings with some specific features: %C A301453 f f(2^n-1) Features %C A301453 ------- -------- -------- %C A301453 A215244 A011782 Substrings are palindromes. %C A301453 A301453 A003242 This sequence; no two consecutive equal substrings. %C A301453 A302395 A032020 All substrings are distinct. %C A301453 A302436 A000012 Substrings with Hamming weight at most 1. %C A301453 A302437 A000045 Substrings with Hamming weight at most 2. %C A301453 A302439 A000012 Substrings are aperiodic. %C A301453 For any such sequence f, the function n -> f(2^n-1) corresponds to a composition of n. %H A301453 Rémy Sigrist, <a href="/A301453/b301453.txt">Table of n, a(n) for n = 0..10000</a> %H A301453 Rémy Sigrist, <a href="/A301453/a301453.png">Scatterplot of the second ordinal transform of the first 1000000 terms</a> %H A301453 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A301453 a(2^n - 1) = A003242(n) for any n >= 0. %e A301453 For n = 19: the binary expansion of 19, "10011", can be split in 11 ways into nonempty substrings with no two consecutive equal substrings: %e A301453 - (10011), %e A301453 - (1001)(1), %e A301453 - (100)(11), %e A301453 - (10)(011), %e A301453 - (10)(01)(1), %e A301453 - (10)(0)(11), %e A301453 - (1)(0011), %e A301453 - (1)(001)(1), %e A301453 - (1)(00)(11), %e A301453 - (1)(0)(011), %e A301453 - (1)(0)(01)(1). %e A301453 Hence a(19) = 11. %o A301453 (PARI) a(n{, pp=0}) = if (n==0, return (1), my (v=0, p=1); while (n, p=(p*2) + (n%2); n\=2; if (p!=pp, v+=a(n, p))); return (v)) %Y A301453 Cf. A000012, A000045, A003242, A011782, A032020, A215244, A301453, A302395, A302436, A302437, A302439. %K A301453 nonn,base %O A301453 0,3 %A A301453 _Rémy Sigrist_, Apr 08 2018