This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301462 #12 Feb 12 2022 20:28:40 %S A301462 1,2,3,8,23,77,254,921,3249,12133,44937,172329,654895,2565963,9956885, %T A301462 39536964,156047622,626262315,2499486155,10129445626,40810378668, %U A301462 166475139700,676304156461,2775117950448,11342074888693,46785595997544,192244951610575,796245213910406 %N A301462 Number of enriched r-trees of size n. %C A301462 An enriched r-tree of size n > 0 is either a single node of size n, or a finite sequence of enriched r-trees with weakly decreasing sizes summing to n - 1. %C A301462 These are different from the R-trees of data science and the enriched R-trees of Bousquet-Mélou and Courtiel. %H A301462 Andrew Howroyd, <a href="/A301462/b301462.txt">Table of n, a(n) for n = 0..500</a> %F A301462 O.g.f.: 1/(1 - x) + x Product_{i > 0} 1/(1 - a(i) x^i). %e A301462 The a(3) = 8 enriched r-trees: 3, (2), ((1)), ((())), (11), (1()), (()1), (()()). %t A301462 ert[n_]:=ert[n]=1+Sum[Times@@ert/@y,{y,IntegerPartitions[n-1]}]; %t A301462 Array[ert,30] %o A301462 (PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); concat([1], v)} \\ _Andrew Howroyd_, Aug 26 2018 %Y A301462 Cf. A000081, A003238, A004111, A032305, A055277, A093637, A127524, A196545, A289501, A290689, A300443, A301342-A301345, A301364-A301368, A301422, A301467, A301469, A301470. %K A301462 nonn %O A301462 0,2 %A A301462 _Gus Wiseman_, Mar 21 2018