cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301468 a(n) = Sum_{k>=0} binomial(k^4, n)/2^(k+1).

This page as a plain text file.
%I A301468 #4 Mar 21 2018 19:25:19
%S A301468 1,75,272880,4681655040,221478589107480,22313622005672849712,
%T A301468 4108665216956980742226192,1249503956658157724969373808320,
%U A301468 583952821303314451291898006535866460,397372225886096887788939487944785734626120,377577476850495509525002042506806447493291890064
%N A301468 a(n) = Sum_{k>=0} binomial(k^4, n)/2^(k+1).
%C A301468 In general, for m > 2, Sum_{k>=0} binomial(k^m, n) / 2^(k+1) is asymptotic to m^(m*n + 1/2) * n^((m-1)*n) / (2*exp((m-1)*n) * (log(2))^(m*n + 1)).
%F A301468 a(n) ~ 2^(8*n) * n^(3*n) / (exp(3*n) * (log(2))^(4*n+1)).
%t A301468 Table[Sum[Binomial[k^4, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 12}]
%t A301468 Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -4*j, 0]/2, {j, 0, n}] / n!, {n, 0, 12}]
%Y A301468 Cf. A173217 (m=2), A301466 (m=3), A301310.
%K A301468 nonn
%O A301468 0,2
%A A301468 _Vaclav Kotesovec_, Mar 21 2018