cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301472 Positive integers not of the form x^2 + 2*y^2 + 3*2^z with x,y,z nonnegative integers.

Original entry on oeis.org

1, 2, 77, 154, 157, 173, 285, 308, 311, 314, 317, 346, 383, 397, 477, 493, 509, 557, 570, 616, 621, 634, 692, 701, 717, 727, 733, 757, 766, 794, 797, 877, 909, 954, 957, 986, 997, 1013, 1018, 1069, 1085, 1093, 1111, 1114, 1117, 1181, 1197, 1221, 1232, 1242, 1268, 1277, 1293
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 21 2018

Keywords

Comments

It might seem that 1 is the only square in this sequence, but 5884015571^2 is also a term of this sequence.
See also A301471 for related information.
It is known that a positive integer n has the form x^2 + 2*y^2 with x and y integers if and only if the p-adic order of n is even for any prime p == 5 or 7 (mod 8).

Examples

			a(1) = 1 and a(2) = 2 since x^2 + 2*y^2 + 3*2^z > 2 for all x,y,z = 0,1,2,....
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[(Mod[Part[Part[f[n],i],1],8]==5||Mod[Part[Part[f[n],i],1],8]==7)&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[Do[If[QQ[m-3*2^k],Goto[aa]],{k,0,Log[2,m/3]}];tab=Append[tab,m];Label[aa],{m,1,1293}];Print[tab]