A301475 Triangular array of polynomials related to the Motzkin triangle and to rooted polyominoes, coefficients in ascending order, read by rows, for 0 <= k <= n.
1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 4, 5, 3, 1, 5, 3, 1, 3, 1, 1, 9, 12, 9, 4, 1, 12, 9, 4, 1, 9, 4, 1, 4, 1, 1, 21, 30, 25, 14, 5, 1, 30, 25, 14, 5, 1, 25, 14, 5, 1, 14, 5, 1, 5, 1, 1, 51, 76, 69, 44, 20, 6, 1, 76, 69, 44, 20, 6, 1, 69, 44, 20, 6, 1, 44, 20, 6, 1, 20, 6, 1, 6, 1, 1
Offset: 0
Examples
Triangle of polynomials starts: 1 1 + x, 1 2 + 2 x + x^2, 2 + x, 1 4 + 5 x + 3 x^2 + x^3, 5 + 3 x^2 + x, 3 + x, 1 9 + 12 x + 9 x^2 + 4 x^3 + x^4, 12 + 9 x + 4 x^2 + x^3, 9 + 4 x + x^2, 4 + x, 1 . Triangle of coefficients starts: 1 1, 1, 1 2, 2, 1, 2, 1, 1 4, 5, 3, 1, 5, 3, 1, 3, 1, 1 9, 12, 9, 4, 1, 12, 9, 4, 1, 9, 4, 1, 4, 1, 1 21, 30, 25, 14, 5, 1, 30, 25, 14, 5, 1, 25, 14, 5, 1, 14, 5, 1, 5, 1, 1
Crossrefs
Programs
-
Maple
CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)): T := (n,k) -> binomial(n,k)*hypergeom([-k/2,1/2-k/2], [-k+n+2], 4); P := (n,m) -> add(simplify(T(n,k)*x^(n-k-m)), k=0..n-m); for n from 0 to 5 do seq(sort(P(n,j),x,ascending), j=0..n) od; for n from 0 to 5 do seq(CoeffList(P(n,j)), j=0..n) od;
Formula
P(n,k) = Sum_{j=0..n-k}binomial(n,j)*hypergeom([-j/2,1/2-j/2],[n-j+2],4)*x^(n-j-k).
T(n,k) is the list of the coefficients of P(n,k) in ascending order.
Row sums are powers of 3, row lengths are the triangular numbers.
Comments