cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301482 Composite numbers whose sum of aliquot parts divide the sum of the squares of their aliquot parts.

This page as a plain text file.
%I A301482 #28 Aug 22 2021 04:40:26
%S A301482 8,22,27,32,77,125,128,243,343,494,512,611,660,1073,1281,1331,1425,
%T A301482 2033,2048,2187,2197,2332,3125,4172,4565,4913,5293,6031,6859,8192,
%U A301482 9983,12167,13969,15818,15947,16807,17485,19683,23489,23840,24389,25241,25389,29791,32768
%N A301482 Composite numbers whose sum of aliquot parts divide the sum of the squares of their aliquot parts.
%C A301482 Semiprimes in the sequence: 22, 77, 611, 1073, 2033, 5293, 6031, 9983, 13969, 15947, 23489, 25241, 40301, 49901, 50249, 51101, 56759, 65017, 71677, 85079, 97217, 98099, 99101, .... - _Robert Israel_, Mar 29 2018
%C A301482 2^k is a term for all odd k > 1. - _Michael S. Branicky_, Aug 22 2021
%H A301482 Amiram Eldar, <a href="/A301482/b301482.txt">Table of n, a(n) for n = 1..1009</a> (terms below 10^9, terms 1..100 from Paolo P. Lava)
%e A301482 Aliquot parts of 77 are 1, 7, 11. Then (1^2 + 7^2 + 11^2)/(1 + 7 + 11) = 171/19 = 9.
%p A301482 with(numtheory): P:=proc(n)
%p A301482 if not isprime(n) and frac((add(p^2,p=divisors(n))-n^2)/(sigma(n)-n))=0
%p A301482 then n; fi; end: seq(P(i),i=2..35*10^3);
%t A301482 aQ[n_] := CompositeQ[n] && Divisible[DivisorSigma[2, n] - n^2, DivisorSigma[1, n] - n]; Select[Range[33000], aQ] (* _Amiram Eldar_, Aug 17 2019 *)
%o A301482 (PARI) isok(n) = (n!=1) && !isprime(n) && (((sigma(n,2) - n^2) % (sigma(n) - n)) == 0); \\ _Michel Marcus_, Mar 23 2018
%o A301482 (Python)
%o A301482 from sympy import divisors
%o A301482 def ok(n):
%o A301482     divs = divisors(n)[:-1]
%o A301482     return len(divs) > 1 and sum(d**2 for d in divs)%sum(divs) == 0
%o A301482 print(list(filter(ok, range(4, 32769)))) # _Michael S. Branicky_, Aug 22 2021
%Y A301482 Cf. A001065, A001157, A020487, A067558.
%Y A301482 Contains A056824.
%K A301482 nonn,easy
%O A301482 1,1
%A A301482 _Paolo P. Lava_, Mar 22 2018