This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301504 #7 Mar 23 2018 05:00:19 %S A301504 1,1,0,0,1,2,1,0,1,3,2,0,2,5,4,1,2,7,7,2,3,10,11,4,4,14,17,8,6,19,25, %T A301504 13,8,25,36,21,12,33,50,33,18,43,69,49,26,56,93,71,38,72,124,102,55, %U A301504 92,163,142,79,118,212,195,112,151,273,265,157,193,350,354,217,246,444 %N A301504 Expansion of Product_{k>=1} (1 + x^(4*k))*(1 + x^(4*k-3)). %C A301504 Number of partitions of n into distinct parts congruent to 0 or 1 mod 4. %H A301504 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A301504 G.f.: Product_{k>=1} (1 + x^A042948(k)). %F A301504 a(n) ~ exp(Pi*sqrt(n/6)) / (4*3^(1/4)*n^(3/4)). - _Vaclav Kotesovec_, Mar 23 2018 %e A301504 a(9) = 3 because we have [9], [8, 1] and [5, 4]. %t A301504 nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k)) (1 + x^(4 k - 3)), {k, 1, nmax}], {x, 0, nmax}], x] %t A301504 nmax = 70; CoefficientList[Series[x^3 QPochhammer[-1, x^4] QPochhammer[-x^(-3), x^4]/(2 (1 + x) (1 - x + x^2)), {x, 0, nmax}], x] %t A301504 nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 1}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A301504 Cf. A035362, A035451, A035457, A042948, A108932, A132463, A261734, A301505, A301507, A301508. %K A301504 nonn %O A301504 0,6 %A A301504 _Ilya Gutkovskiy_, Mar 22 2018