cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301505 Expansion of Product_{k>=1} (1 + x^(4*k))*(1 + x^(4*k-1)).

This page as a plain text file.
%I A301505 #7 Mar 23 2018 05:01:06
%S A301505 1,0,0,1,1,0,0,2,1,0,1,3,2,0,2,5,2,0,4,7,3,1,7,10,4,2,11,14,5,4,17,19,
%T A301505 6,8,25,25,9,13,36,33,12,21,50,43,16,33,69,55,23,49,93,70,32,71,124,
%U A301505 89,45,102,163,112,64,142,212,141,89,195,273,177,123,265,349
%N A301505 Expansion of Product_{k>=1} (1 + x^(4*k))*(1 + x^(4*k-1)).
%C A301505 Number of partitions of n into distinct parts congruent to 0 or 3 mod 4.
%H A301505 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A301505 G.f.: Product_{k>=1} (1 + x^A014601(k)).
%F A301505 a(n) ~ exp(Pi*sqrt(n/6)) / (2^(5/2)*3^(1/4)*n^(3/4)). - _Vaclav Kotesovec_, Mar 23 2018
%e A301505 a(11) = 3 because we have [11], [8, 3] and [7, 4].
%t A301505 nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k)) (1 + x^(4 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
%t A301505 nmax = 70; CoefficientList[Series[x QPochhammer[-1, x^4] QPochhammer[-x^(-1), x^4]/(2 (1 + x)), {x, 0, nmax}], x]
%t A301505 nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 3}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A301505 Cf. A014601, A035364, A035457, A131795, A147599, A301504, A301507, A301508.
%K A301505 nonn
%O A301505 0,8
%A A301505 _Ilya Gutkovskiy_, Mar 22 2018