This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301508 #7 Mar 23 2018 05:00:37 %S A301508 1,0,1,1,0,1,1,1,1,2,2,2,2,3,2,3,4,4,5,5,6,7,6,8,9,9,11,12,13,14,15, %T A301508 17,19,20,23,25,27,29,31,35,37,40,46,48,52,57,60,66,71,76,85,90,97, %U A301508 105,112,121,129,140,152,161,174,187,198,214,228,245,265,280,302,323,342 %N A301508 Expansion of Product_{k>=0} (1 + x^(4*k+2))*(1 + x^(4*k+3)). %C A301508 Number of partitions of n into distinct parts congruent to 2 or 3 mod 4. %H A301508 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A301508 G.f.: Product_{k>=1} (1 + x^A042964(k)). %F A301508 a(n) ~ exp(Pi*sqrt(n/6)) / (4*3^(1/4)*n^(3/4)). - _Vaclav Kotesovec_, Mar 23 2018 %e A301508 a(13) = 3 because we have [11, 2], [10, 3] and [7, 6]. %t A301508 nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k + 2)) (1 + x^(4 k + 3)), {k, 0, nmax}], {x, 0, nmax}], x] %t A301508 nmax = 70; CoefficientList[Series[QPochhammer[-x^2, x^4] QPochhammer[-x^3, x^4], {x, 0, nmax}], x] %t A301508 nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{2, 3}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A301508 Cf. A035366, A042964, A070048, A131795, A147599, A301504, A301505, A301507. %K A301508 nonn %O A301508 0,10 %A A301508 _Ilya Gutkovskiy_, Mar 22 2018