cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301534 Number of ways to write the n-th prime congruent to 7 modulo 12 as x^2 + 3*y^2 + 15*2^z with x,y,z nonnegative integers.

Original entry on oeis.org

0, 2, 3, 4, 5, 5, 2, 6, 6, 4, 7, 4, 9, 6, 6, 6, 7, 9, 5, 10, 3, 9, 7, 9, 8, 11, 9, 8, 10, 5, 8, 9, 4, 10, 7, 7, 7, 8, 7, 13, 8, 6, 6, 14, 7, 15, 3, 11, 8, 10, 8, 7, 7, 9, 6, 9, 7, 7, 10, 12, 6, 9, 4, 7, 10, 12, 12, 7, 13, 9, 12, 6, 7, 10, 5, 8, 7, 12, 12, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 16 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any prime p > 7 with p == 7 (mod 12) can be written as x^2 + 3*y^2 + 15*2^z with x,y,z nonnegative integers.
We have verified the conjecture for all primes p == 7 (mod 12) with 7 < p < 8*10^9.

Examples

			a(1) = 0 since 7 cannot be written as x^2 + 3*y^2 + 15*2^z with x,y,z nonnegative integers.
a(2) = 2 since the second prime congruent to 7 modulo 12 is 19 and 19 = 1^2 + 3*1^2 + 15*2^0 = 2^2 + 3*0^2 + 15*2^0.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=Prime[n];
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[MemberQ[{2},Mod[Part[Part[f[n],i],1],3]]&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=n==0||(n>0&&g[n]);
    n=0;Do[If[Mod[p[m],12]!=7,Goto[aa]];n=n+1;r=0;Do[If[QQ[p[m]-15*2^k],Do[If[SQ[p[m]-15*2^k-3x^2],r=r+1],{x,0,Sqrt[(p[m]-15*2^k)/3]}]],{k,0,Log[2,p[m]/15]}];Print[n," ",r];Label[aa],{m,1,315}]