A301536 Number of n X 3 0..1 arrays with every element equal to 0, 1 or 3 horizontally or vertically adjacent elements, with upper left element zero.
3, 6, 9, 26, 61, 154, 374, 941, 2357, 5963, 15074, 38168, 96641, 244836, 620311, 1571854, 3983147, 10093850, 25579490, 64823479, 164276135, 416311227, 1055023990, 2673664936, 6775663297, 17171047596, 43515284891, 110277499816
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0. .0..1..0. .0..1..0. .0..1..0. .0..0..0. .0..1..0. .0..1..0 ..1..0..1. .1..0..1. .1..0..1. .0..0..0. .1..0..1. .1..0..1. .1..0..1 ..0..1..0. .1..1..1. .0..1..1. .0..0..0. .1..1..0. .1..0..1. .0..1..1 ..1..0..0. .1..1..1. .1..0..1. .0..1..0. .1..0..0. .0..1..0. .1..0..1 ..0..1..0. .1..0..1. .0..1..0. .1..0..1. .0..1..0. .0..1..0. .0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A301541.
Formula
Empirical: a(n) = 3*a(n-1) -a(n-2) -a(n-3) +2*a(n-4) -a(n-5) +3*a(n-6) -11*a(n-7) -a(n-8) +2*a(n-9) -4*a(n-10) -2*a(n-11) -a(n-12) +11*a(n-13) +3*a(n-14) +a(n-15) +2*a(n-16) +a(n-17) -a(n-18) -3*a(n-19) -a(n-20).
Comments