This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301544 #14 Oct 26 2018 16:49:59 %S A301544 1,1,66,796,7102,70178,702813,6439533,56938814,495807251,4218728690, %T A301544 34991240657,284295574638,2269120791410,17804772970005, %U A301544 137455131596032,1045354069608726,7839809431539193,58027706392726849,424187792875896932,3064539107659680502 %N A301544 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_6(k)). %H A301544 Seiichi Manyama, <a href="/A301544/b301544.txt">Table of n, a(n) for n = 0..1769</a> %F A301544 a(n) ~ exp(8 * 2^(3/8) * Pi * (Zeta(7)/15)^(1/8) * n^(7/8)/7 - Pi*(5/Zeta(7))^(1/8) * n^(1/8) / (504 * 2^(3/8) * 3^(7/8)) + 45*Zeta(7) / (16*Pi^6)) * Zeta(7)^(1/16) / (2^(29/16) * 15^(1/16) * n^(9/16)). %F A301544 G.f.: exp(Sum_{k>=1} sigma_7(k)*x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Oct 26 2018 %t A301544 nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[6, k], {k, 1, nmax}], {x, 0, nmax}], x] %Y A301544 Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), this sequence (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9). %Y A301544 Cf. A013954, A301550. %K A301544 nonn %O A301544 0,3 %A A301544 _Vaclav Kotesovec_, Mar 23 2018