cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301545 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_7(k)).

This page as a plain text file.
%I A301545 #11 Oct 26 2018 16:50:51
%S A301545 1,1,130,2318,27216,387594,5560934,70939556,876220362,10760122935,
%T A301545 128556693118,1491396412267,16958961282303,189514843653171,
%U A301545 2079577812522100,22430047600047542,238222882236692332,2493975995373397906,25753455308417881148,262500213585285366039
%N A301545 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_7(k)).
%H A301545 Seiichi Manyama, <a href="/A301545/b301545.txt">Table of n, a(n) for n = 0..1412</a>
%F A301545 a(n) ~ exp(3^(17/9) * Pi^(8/9) * (Zeta(9)/5)^(1/9) * n^(8/9) / 2^(7/3) - Zeta'(-7)/2) * (Zeta(9)/(15*Pi))^(241/4320) / (3 * 2^(241/1440) * n^(2401/4320)).
%F A301545 G.f.: exp(Sum_{k>=1} sigma_8(k)*x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Oct 26 2018
%t A301545 nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[7, k], {k, 1, nmax}], {x, 0, nmax}], x]
%Y A301545 Cf. A013955, A301551.
%K A301545 nonn
%O A301545 0,3
%A A301545 _Vaclav Kotesovec_, Mar 23 2018