This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301547 #13 Oct 26 2018 14:22:28 %S A301547 1,1,514,20198,414696,12465714,373679122,9181285000,224372879810, %T A301547 5583837482767,132433701077938,3028947042351535,68425900639083569, %U A301547 1518510622688185301,32936878700790531296,701684036762210944310,14726705417058058788172,304326729686784847885978 %N A301547 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_9(k)). %H A301547 Seiichi Manyama, <a href="/A301547/b301547.txt">Table of n, a(n) for n = 0..995</a> %F A301547 a(n) ~ exp((11*Pi)^(10/11) * (Zeta(11)/3)^(1/11) * n^(10/11) / (2^(3/11) * 5^(10/11)) - Zeta'(-9)/2) * (5*Zeta(11)/(3*Pi))^(131/2904) / (2^(131/968) * 11^(1583/2904) * n^(1583/2904)). %F A301547 G.f.: exp(Sum_{k>=1} sigma_10(k)*x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Oct 26 2018 %p A301547 with(numtheory): %p A301547 a:= proc(n) option remember; `if`(n=0, 1, add(add(d* %p A301547 sigma[9](d), d=divisors(j))*a(n-j), j=1..n)/n) %p A301547 end: %p A301547 seq(a(n), n=0..20); # _Alois P. Heinz_, Oct 26 2018 %t A301547 nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[9, k], {k, 1, nmax}], {x, 0, nmax}], x] %Y A301547 Cf. A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8). %Y A301547 Cf. A013957, A301553. %K A301547 nonn %O A301547 0,3 %A A301547 _Vaclav Kotesovec_, Mar 23 2018