This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301548 #12 Oct 26 2018 16:53:13 %S A301548 1,1,17,99,491,2429,12056,56618,259074,1155193,5044288,21585280, %T A301548 90694483,374661505,1524090522,6111565745,24181962002,94491963120, %U A301548 364920615165,1393789672170,5268145436728,19715988877445,73096492576283,268589397735778,978533798885874 %N A301548 Expansion of Product_{k>=1} (1 + x^k)^(sigma_4(k)). %H A301548 Seiichi Manyama, <a href="/A301548/b301548.txt">Table of n, a(n) for n = 0..3000</a> %F A301548 a(n) ~ exp(6^(2/3) * Pi * (31*Zeta(5)/7)^(1/6) * n^(5/6)/5 + Pi *(7/(31*Zeta(5)))^(1/6) * n^(1/6) / (240*6^(2/3))) * (31*Zeta(5)/7)^(1/12) / (2^(7/6) * 3^(2/3) * n^(7/12)). %F A301548 G.f.: exp(Sum_{k>=1} sigma_5(k)*x^k/(k*(1 - x^(2*k)))). - _Ilya Gutkovskiy_, Oct 26 2018 %t A301548 nmax = 40; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[4, k], {k, 1, nmax}], {x, 0, nmax}], x] %Y A301548 Cf. A001159, A107742, A301542. %K A301548 nonn %O A301548 0,3 %A A301548 _Vaclav Kotesovec_, Mar 23 2018