This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301550 #12 Oct 26 2018 16:53:54 %S A301550 1,1,65,795,6971,69317,690756,6316950,55729130,484275457,4111328940, %T A301550 34029153900,275901508917,2197552381491,17207716281240, %U A301550 132575879110175,1006214596929014,7531171360277228,55632520744009711,405876769498808480,2926507055330036936 %N A301550 Expansion of Product_{k>=1} (1 + x^k)^(sigma_6(k)). %H A301550 Seiichi Manyama, <a href="/A301550/b301550.txt">Table of n, a(n) for n = 0..1000</a> %F A301550 a(n) ~ exp(2^(5/2) * Pi * (127*Zeta(7)/15)^(1/8) * n^(7/8)/7 - Pi * (5/(127*Zeta(7)))^(1/8) * n^(1/8) / (504 * sqrt(2) * 3^(7/8))) * (127*Zeta(7)/15)^(1/16) / (2^(9/4) * n^(9/16)). %F A301550 G.f.: exp(Sum_{k>=1} sigma_7(k)*x^k/(k*(1 - x^(2*k)))). - _Ilya Gutkovskiy_, Oct 26 2018 %t A301550 nmax = 30; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[6, k], {k, 1, nmax}], {x, 0, nmax}], x] %Y A301550 Cf. A013954, A107742, A301544. %K A301550 nonn %O A301550 0,3 %A A301550 _Vaclav Kotesovec_, Mar 23 2018