cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301551 Expansion of Product_{k>=1} (1 + x^k)^(sigma_7(k)).

This page as a plain text file.
%I A301551 #12 Oct 26 2018 18:33:05
%S A301551 1,1,129,2317,26957,385147,5514889,70250881,866874825,10634404922,
%T A301551 126906497939,1470673175003,16705788322140,186487470519166,
%U A301551 2044203433733016,22025647881901542,233686866722213324,2443978994099801452,25211475391206919299,256716054713570158748
%N A301551 Expansion of Product_{k>=1} (1 + x^k)^(sigma_7(k)).
%H A301551 Seiichi Manyama, <a href="/A301551/b301551.txt">Table of n, a(n) for n = 0..1000</a>
%F A301551 a(n) ~ exp(9 * Pi^(8/9) * (17*Zeta(9))^(1/9) * n^(8/9) / 2^(29/9)) * (17*Zeta(9)/Pi)^(1/18) / (3 * 2^(883/1440) * n^(5/9)).
%F A301551 G.f.: exp(Sum_{k>=1} sigma_8(k)*x^k/(k*(1 - x^(2*k)))). - _Ilya Gutkovskiy_, Oct 26 2018
%t A301551 nmax = 30; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[7, k], {k, 1, nmax}], {x, 0, nmax}], x]
%Y A301551 Cf. A013955, A107742, A301545.
%K A301551 nonn
%O A301551 0,3
%A A301551 _Vaclav Kotesovec_, Mar 23 2018