This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301552 #12 Oct 26 2018 18:33:12 %S A301552 1,1,257,6819,105251,2175749,44995096,796670938,13805853214, %T A301552 240569119333,4044892975196,65784204818948,1051532586300939, %U A301552 16521916387136217,254423642953508270,3848289482388789293,57317953928614093036,841172595390506945766,12168324212099663732171 %N A301552 Expansion of Product_{k>=1} (1 + x^k)^(sigma_8(k)). %H A301552 Seiichi Manyama, <a href="/A301552/b301552.txt">Table of n, a(n) for n = 0..1000</a> %F A301552 a(n) ~ exp(5 * 2^(4/5) * Pi * (511*Zeta(9)/33)^(1/10) * n^(9/10)/9 + Pi * (11/(511*Zeta(9)))^(1/10) * n^(1/10) / (480 * 2^(4/5) * 3^(9/10))) * (511*Zeta(9)/33)^(1/20) / (2^(11/10) * sqrt(5) * n^(11/20)). %F A301552 G.f.: exp(Sum_{k>=1} sigma_9(k)*x^k/(k*(1 - x^(2*k)))). - _Ilya Gutkovskiy_, Oct 26 2018 %t A301552 nmax = 30; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[8, k], {k, 1, nmax}], {x, 0, nmax}], x] %Y A301552 Cf. A013956, A107742, A301546. %K A301552 nonn %O A301552 0,3 %A A301552 _Vaclav Kotesovec_, Mar 23 2018