cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301552 Expansion of Product_{k>=1} (1 + x^k)^(sigma_8(k)).

This page as a plain text file.
%I A301552 #12 Oct 26 2018 18:33:12
%S A301552 1,1,257,6819,105251,2175749,44995096,796670938,13805853214,
%T A301552 240569119333,4044892975196,65784204818948,1051532586300939,
%U A301552 16521916387136217,254423642953508270,3848289482388789293,57317953928614093036,841172595390506945766,12168324212099663732171
%N A301552 Expansion of Product_{k>=1} (1 + x^k)^(sigma_8(k)).
%H A301552 Seiichi Manyama, <a href="/A301552/b301552.txt">Table of n, a(n) for n = 0..1000</a>
%F A301552 a(n) ~ exp(5 * 2^(4/5) * Pi * (511*Zeta(9)/33)^(1/10) * n^(9/10)/9 + Pi * (11/(511*Zeta(9)))^(1/10) * n^(1/10) / (480 * 2^(4/5) * 3^(9/10))) * (511*Zeta(9)/33)^(1/20) / (2^(11/10) * sqrt(5) * n^(11/20)).
%F A301552 G.f.: exp(Sum_{k>=1} sigma_9(k)*x^k/(k*(1 - x^(2*k)))). - _Ilya Gutkovskiy_, Oct 26 2018
%t A301552 nmax = 30; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[8, k], {k, 1, nmax}], {x, 0, nmax}], x]
%Y A301552 Cf. A013956, A107742, A301546.
%K A301552 nonn
%O A301552 0,3
%A A301552 _Vaclav Kotesovec_, Mar 23 2018