cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301553 Expansion of Product_{k>=1} (1 + x^k)^(sigma_9(k)).

This page as a plain text file.
%I A301553 #11 Oct 27 2018 09:21:11
%S A301553 1,1,513,20197,413669,12445003,372981573,9158438541,223776496101,
%T A301553 5567873958982,132009631562091,3018411978731059,68171158091244082,
%U A301553 1512439928316217508,32796174722883608382,698503712498547606328,14656105328324700415778,302787437988353941515934
%N A301553 Expansion of Product_{k>=1} (1 + x^k)^(sigma_9(k)).
%H A301553 Seiichi Manyama, <a href="/A301553/b301553.txt">Table of n, a(n) for n = 0..995</a>
%F A301553 a(n) ~ exp(11 * Pi^(10/11) * (31*Zeta(11))^(1/11) * n^(10/11) / (2^(13/11) * 5^(10/11))) * (155*Zeta(11)/Pi)^(1/22) / (2^(155/264) * sqrt(11) * n^(6/11)).
%F A301553 G.f.: exp(Sum_{k>=1} sigma_10(k)*x^k/(k*(1 - x^(2*k)))). - _Ilya Gutkovskiy_, Oct 26 2018
%t A301553 nmax = 30; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[9, k], {k, 1, nmax}], {x, 0, nmax}], x]
%Y A301553 Cf. A107742 (m=0), A192065 (m=1), A288414 (m=2), A288415 (m=3), A301548 (m=4), A301549 (m=5), A301550 (m=6), A301551 (m=7), A301552 (m=8).
%Y A301553 Cf. A013957, A301547.
%K A301553 nonn
%O A301553 0,3
%A A301553 _Vaclav Kotesovec_, Mar 23 2018