This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301555 #16 Oct 25 2018 11:08:07 %S A301555 1,2,8,22,62,154,392,914,2136,4776,10544,22626,47982,99538,204100, %T A301555 411714,821130,1616170,3148812,6066338,11579954,21893214,41045780, %U A301555 76306030,140783060,257789064,468783092,846697340,1519599658,2710476106,4806507720,8475250510 %N A301555 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(sigma(k)). %C A301555 Convolution of A061256 and A192065. %H A301555 Seiichi Manyama, <a href="/A301555/b301555.txt">Table of n, a(n) for n = 0..5000</a> %F A301555 a(n) ~ exp((3*Pi)^(2/3) * (7*Zeta(3))^(1/3) * n^(2/3) / 2^(5/3) - 3^(1/3) * Pi^(4/3) * n^(1/3) / (2^(7/3) * (7*Zeta(3))^(1/3)) - 1/24 - Pi^2 / (224 * Zeta(3))) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(13/18) * 3^(47/72) * Pi^(11/72) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962. %F A301555 G.f.: Product_{i>=1, j>=1} ((1 + x^(i*j))/(1 - x^(i*j)))^i. - _Ilya Gutkovskiy_, Aug 29 2018 %t A301555 nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x] %Y A301555 Cf. A000203, A061256, A192065. %K A301555 nonn %O A301555 0,2 %A A301555 _Vaclav Kotesovec_, Mar 23 2018