cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301556 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(sigma_2(k)).

Original entry on oeis.org

1, 2, 12, 42, 154, 498, 1640, 4990, 15092, 43840, 125220, 348478, 954294, 2561714, 6776404, 17644494, 45338734, 114971434, 288148860, 713968998, 1750662814, 4249685398, 10219662844, 24356466418, 57558783492, 134922807056, 313842321696, 724651728916
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Comments

Convolution of A275585 and A288414.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^DivisorSigma[2, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(5/4) * Pi * Zeta(3)^(1/4) * n^(3/4)/3 - Pi*n^(1/4) / (3 * 2^(13/4) * Zeta(3)^(1/4)) + Zeta(3)/(8*Pi^2)) * Zeta(3)^(1/8) / (2^(15/8) * n^(5/8)).