This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301567 #7 Mar 24 2018 19:08:38 %S A301567 1,1,0,0,0,1,2,1,0,0,1,3,2,0,0,2,5,4,1,0,2,7,7,2,0,3,10,11,4,0,4,14, %T A301567 17,8,1,5,19,25,13,2,6,25,36,21,4,8,33,50,33,8,10,43,69,49,14,13,55, %U A301567 93,71,23,17,70,124,102,37,22,88,163,142,57,30,110,212,195,85 %N A301567 Expansion of Product_{k>=1} (1 + x^(5*k))*(1 + x^(5*k-4)). %C A301567 Number of partitions of n into distinct parts congruent to 0 or 1 mod 5. %H A301567 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A301567 G.f.: Product_{k>=2} (1 + x^A008851(k)). %F A301567 a(n) ~ exp(Pi*sqrt(2*n/15)) / (2^(29/20) * 15^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Mar 24 2018 %e A301567 a(11) = 3 because we have [11], [10, 1] and [6, 5]. %t A301567 nmax = 74; CoefficientList[Series[Product[(1 + x^(5 k)) (1 + x^(5 k - 4)), {k, 1, nmax}], {x, 0, nmax}], x] %t A301567 nmax = 74; CoefficientList[Series[x^4 QPochhammer[-1, x^5] QPochhammer[-x^(-4), x^5]/(2 (1 + x^4)), {x, 0, nmax}], x] %t A301567 nmax = 74; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 1}, Mod[k, 5]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A301567 Cf. A008851, A035367, A036820, A203776, A219607, A280454, A301562, A301563, A301564, A301565, A301568, A301569, A301570. %K A301567 nonn %O A301567 0,7 %A A301567 _Ilya Gutkovskiy_, Mar 23 2018