This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A301569 #7 Mar 24 2018 19:09:46 %S A301569 1,0,0,1,0,1,0,0,2,0,1,1,0,3,0,2,2,0,5,0,2,4,0,7,1,3,7,0,10,2,4,11,0, %T A301569 14,4,5,17,0,19,8,6,25,1,25,13,8,36,2,33,21,10,50,4,43,33,12,69,8,55, %U A301569 49,15,93,14,70,71,19,124,23,88,102,24,163,37,110,142,31 %N A301569 Expansion of Product_{k>=1} (1 + x^(5*k))*(1 + x^(5*k-2)). %C A301569 Number of partitions of n into distinct parts congruent to 0 or 3 mod 5. %H A301569 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A301569 G.f.: Product_{k>=2} (1 + x^A047218(k)). %F A301569 a(n) ~ exp(Pi*sqrt(2*n/15)) / (2^(37/20) * 15^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Mar 24 2018 %e A301569 a(13) = 3 because we have [13], [10, 3] and [8, 5]. %t A301569 nmax = 75; CoefficientList[Series[Product[(1 + x^(5 k)) (1 + x^(5 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x] %t A301569 nmax = 75; CoefficientList[Series[x^2 QPochhammer[-1, x^5] QPochhammer[-x^(-2), x^5]/(2 (1 + x^2)), {x, 0, nmax}], x] %t A301569 nmax = 75; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 3}, Mod[k, 5]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A301569 Cf. A035369, A036822, A047218, A203776, A219607, A281271, A301562, A301563, A301564, A301565, A301567, A301568, A301570. %K A301569 nonn %O A301569 0,9 %A A301569 _Ilya Gutkovskiy_, Mar 23 2018